Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts.

نویسندگان

  • Jing Qiu
  • Guangtong Zeng
  • Prathamesh Pavaskar
  • Zhen Li
  • Stephen B Cronin
چکیده

Integrating plasmon resonant nanostructures with photocatalytic semiconductors shows great promise for high efficiency photocatalytic water splitting. However, the electrochemical instability of most III-V semiconductors severely limits their applicability in photocatalysis. In this work, we passivate p-type GaP with a thin layer of n-type TiO2 using atomic layer deposition. The TiO2 passivation layer prevents corrosion of the GaP, as evidenced by atomic force microscopy and photoelectrochemical measurements. In addition, the TiO2 passivation layer provides an enhancement in photoconversion efficiency through the formation of a charge separating pn-region. Plasmonic Au nanoparticles deposited on top of the TiO2-passivated GaP further increases the photoconversion efficiency through local field enhancement. These two enhancement mechanisms are separated by systematically varying the thickness of the TiO2 layer. Because of the tradeoff between the quickly decaying plasmonic fields and the formation of the pn-charge separation region, an optimum performance is achieved for a TiO2 thickness of 0.5 nm. Finite difference time domain (FDTD) simulations of the electric field profiles in this photocatalytic heterostructure corroborate these results. The effects of plasmonic enhancement are distinguished from the natural catalytic properties of Au by evaluating similar photocatalytic TiO2/GaP structures with catalytic, non-plasmonic metals (i.e., Pt) instead of Au. This general approach of passivating narrower band gap semiconductors enables a wider range of materials to be considered for plasmon-enhanced photocatalysis for high efficiency water splitting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demons...

متن کامل

Development of Visible-light-active Photocatalyst for Hydrogen Production and Environmental Application

Semiconductor photocatalysis has been intensively studied in recent decades for a wide variety of application such as hydrogen production from water splitting and water and air treatment. The majority of photocatalysts are, however, wide band-gap semiconductors which are active only under UV irradiation. In order to effectively utilize visible solar radiation, this thesis investigates various t...

متن کامل

Materials and mechanisms of artificial photosynthesis

Since the discovery of the Honda-Fujishima effect of water splitting[1] using a titanium dioxide (TiO2) electrode in the early 1970s, numerous studies have been conducted and are still growing on photocatalytic reactions of TiO2. Titanium dioxide serves as a model case for the mechanistic studies of photocatalysis, but it has a serious drawback as a photocatalyst for water splitting: the band g...

متن کامل

CO 2 Reduction to Methanol on TiO 2 ‐ Passivated GaP Photocatalysts

6 ABSTRACT: In the past, the electrochemical instability of III−V semi7 conductors has severely limited their applicability in photocatlaysis. As a result, 8 a vast majority of the research on photocatalysis has been done on TiO2, which is 9 chemically robust over a wide range of pH. However, TiO2 has a wide band gap 10 (3.2 eV) and can only absorb ∼4% of the solar spectrum, and thus, it will n...

متن کامل

Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2014